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NOMENCLATURE

a - contact radius
b = width of cross section
C - constant of coil geometry (27c < coil spacing)

3 = acceleration due to gravity

/) = depth of cross section

¢ = numerical index indicating particular coil, /¢ << » (subscript)
j = numerical index indicating iteratien cycle (superscript)

k r.spring,'q:}gnatant

g2 length
#” = mass of spring per unit length

N: number of coils of spring Sor number of g's)
p:pressure, g7:pressure ‘

¥ : spring radius

O: coordinate of length measured along spring coil
U+ radial deformation of spring

A= variable numerical index

A= cross sectional area of spring

C : constant of integration

£= modulus of elasticity

f+ torce, f:."

f + moment of inertia of spring section

preload

/K‘ constants, defined as used, in text
Mrlprlng bending moment

M rvalue of M at attachment to barrel

M maximum value of M (at attachment to arbor)

o
P= force
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R:
2 « ratio of any coll udlul to radius of last (largest) coil -~ 2.
W
S 1 () (5w )]
o )
= Jo/‘s“"
// z torque at spring arber
7;': maximum linear value of T (eccurs at y? ‘9’_,)‘
strain energy of spring '

work done in coil deformatien

=5

o - angular ‘measurement follewing spiral of coils
S: linear deformation
S o= change in angle
A Rz change in radius
€ = eccentricity of spiral
fr=3.1416
77: potential function = [/ - w
0~- stress
0‘7’= yield stress
f- radius of curvature
/a. coefficient of friction
- poisson's ratio
4= shear stress
?s angle of spring wind-up from position at rest in barrel
ﬁr point, ? o at which linear actien initiates (all coils are 'free')
%polnt. @ at which linear action ceases (spring begins to extend)
(= 8pin rate
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1. INTRODUCTION

This report will serve to summarize the analysis, and the conclusions
drawn therefrom, in compliance with the reqﬁirementl of contract #DA-30-
069-AMC-17(A). A summary of these conclusions will be found in section 2
of this report, and the full analysis is reported in sections 3 to 6. The sub-
jects of this analysis are somewhat varied in view of the nature of the ''Scope"
of the contract, which calls for analysis in problem areas of more or less in-
dependent content. The general areas covered are related to the effects of

the dynamic projectile environment upon specific fuze components:

(a) Spiral Motor Springs

(b) Pivot and Journal Friction
(c) Torsion Hair Springs

(d) Beam Hair Springs

Thus, the performance characteristics and various specific aspects of the
behavior of these components in a spin or setback environment will he the

subject of the following discussion.

The initial analysis undertaken pursuant to contract #DA-30-069-AMC-
17(A) was concerned with the analysis of spiral motor springs. This analysis
had, as its objective, the determination of the effects of projectile spin upon

the torque yield of the motor spring.,

It was determined that in order to obtain physically meaningful results,
the non-spinning or "static'' spring must be fully understood. At the time,
the body of literature which dealt with spiral springs considered only those

r&‘l“//y
springs unconltraineﬁy an outer barrel. A great deal of empirical evidence

1.1
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was available which supported the view that the existing analytical approaches

were inapplicable to ''real' springs.

Thus the "static" analysis was undertaken to determine the character of
the relationship between arbor torque and the physical parameters of the spring.
This was determined, yielding the ecquation governing the ''torque-turn' chare
acteristic within the region of interest, This equation, in addition to being of
great utility and interest, forms the basis for comparison in evaluating the

spin effects.

The next step in the analysis was facilitated by dividing the spin effect
into its simplest constituents, i,e., axisymmetric extensional deformation
and axisymmetric bending deformation. The effect of these modes of defor-
mation upon the torque output at the arbor is described in detail in section 3
of this report, along with the '"static'’ torque-turn characteristic. In this
same section the possibility of the incidence of greatly eccen!;ric deformations

was introduced,

The question of eccentric deformation received preliminary analytical
and experimental study; as reported in section 3, This mode of deformation
was not foreseen at the outset of the investigation, nor was the possible extent

of its effects. These effects are indicated, on an order of magnitude basis,

Investigations of pivot friction under the influence of high centrifugal load-
ing due to projectile spin are indicated in section 4, following the discussion of
motor spring eccentricity. Calculations are performed for the fully elastic
condition of the pivet and pivot seat. It is note. that under ordinary conditions,

plastic action and accelerated wear may easily become important considerations.

1.2



The beam hair-spring problems associated with this contract are in-

cluded in scction 5.

Preliminary investigation of the torsion spring-critical speed problem
is indicated in section 6. It is found that, for particular cases of spring
geometry, the various modes of critical speed may be reclated to the tor-
sional fréquency parameters of the escapement. Similar relationships may

<

be cstablished for other configurations of interest. =

1.3



2, CONCLUSIONS

2.1 SPIRAL MOTOR SPRING

The various stages of this investigation are listed below, for reference:

(2) Study of torque-turn relationship for non-spinning spiral motor spring
(1) Relationship in linear region

(2) Maximum torque (utilizing '"limit plastic' effects)

(b) Axi-symmetric effects of spin environment
(1) Effects of extensional deformations

(2) Effects of bending deformations

(c) Non-axi-symmetric effects of spin environment
(1) Sources of spiral eccentricity

(2) Eccentric effects.

Of the above listed topics, the non-spinning spring characteristics have
t een fully explored, as indicated in section 3.2. Only in the event that it is
found desirable to use the non-linear region of, the torque-turn characteristic,
would it be necessary to pursue the investigation of the non-spinning spring

further than hds been presently completed.

Axi=-symmetric effects of the spin environment are presented in section 3. 3.
These effects are discussed in great detail, and the analytical tools are devel=
oped for their detcrmination in any given case. Further work in this area would
be concerned with the establishment of the relationship between torque, defor-

mation and spring parameters; and, therefore, of torque-spin-sensitivity.



The incidence of non-axi-symmetric deformations and the torque per=
turbations resulting therefrom, is pointed out in section 3.3,2, As is dis-
cussed there, analysis of this phenomenon is, in many respects, an extension
of the axi-symmetric analysis, It is true, however, that this extension is not
minor in exccution, although the basic concept of approach follows that already

developed for the axi-symmetric case,

Technik has found that in addition to axi-symmetric effects investigated
within the scope of this contract the torque variations due to eccentric effects
could be a dominant controlling factor in the proper utilization of spiral springs
in fuzc design. The presence of these eccentric effects was first noticed from
empirical evidence and then verified analytically. It was found that th,e existence
of this eccentricity is intrinsically tied to the spiral spring geometry. The
magnitude of the associated torque effects is dependent upon the parameters
of the spring design and the spin environment. However, the specific relation=-
ship between eccentric behavior and physical parameters, has not yet been es-

tablished.

Extensive deformation of thi.s sort would result in a :najor perturbation
upon the torque-turn characteristic, above that induced by the axi-symmetric
moders of deformation. At the present stage of Technik's analysis, the exten-
sion to eccentric deformation is a natural next step. As such, it involves an
advance of the current state-of-the-art (as presented in section 3), which should
be built upon the foundation of the current level of knowledge. Technik's pres-
ent level of experience with this analysis will prove an invaluable asset in con-
tinuing the investigation of all the ramifications of problems associated with

spiral motor springs.

2.2



A summary of the analytical results of the spiral spring analysis will

be found in section 3,4.

2.2 OTHER PROBLEMS

In addition to the major effort expended on the analysis of spiral motor
springs, during the course of this contract several other independent prob=
lems received Technik's attention as per the directions of the technical super=-
visor and the provisions of the contract '"Scope''. The results of these inves-

tigations will be found in the respective scctions dcvoted to the analysis (4,5 and 6).

Briefly, these sections represent first-order analyses of torque losses
in pivots and journal bearings under high centrifugal loading, of critical speeds
in a torsional hair spring and of setback and fabrication technique effects on

beam hair springs.

In the section on pivot and journal friction, it is found that, in addition to
conventional friction considerations, the high loads associated with high pro-
jectile spin rates.may cause plastic deformation effects (brinelling). This type
of deformation would influence the nominal elastic torque characteristics of
the bearing and may lead to a situation designated as accelerated wear, where

the material is capable of shearing under the frictional loading developed.

In section 5, it is shown that for the normal range of beam hair spring
dimensions considered, resistance to setback loading is limited by the onset
of plastic action rather than by beam buckling. Thus the indicated design pro-
cedure is to increase the plastic carrying capacity of the spring cross=-section
with only secondary regard to the elastic stability of the beamn. In addition,

the effects of a wedge retainer upon beam hair spring deformation are shown

2.3
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to be uxtensive over tho length of the spring, Thus, this should be roconside
ered if It {s to be a method of fabrication,

The {inal section indicates tho unique relationship that cxists between all
the torsion hair spring parameters. The samo parameters determine critical
spced and natural froquency, thus knowledge of one may bo used to indicate the
other, without the necessity of direct appeal to all implicd parameters.

2.4
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3. SPIRAL MOTOR SPRINGS

3.1, INTRODUCTION

This report will summarise Technik's analysis, to date, with respect
to the behavior and deformation of spiral motor springs in a spin environ-
ment, The axis of spin is taken perpendicular to the plane of the spring,
as is conventional in mechanical time fuse practice; with the arbor axis co-
linear with the projectile spin axis. This analysis is provided fer under con-

tract #DA=30-069-AMC=-17(A).

ﬂrrﬂ

3. !
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In order to fully understand motor spring characteristics in a spin
environment, it is first necessary to understand these same character-
istics in the non-spinning condition., It appears that even non-dynamic
spiral spring theory has not previously been brought into agreement with

the type of empirical data which is observed by spring makers and users.

Thus the program has been divided into phases of investigation dealing
separately with (1) non-spinning and (2) spinning environments. It was
found that the ''spin analysis' could advantageously be further sub=divided
into so-called ''membrane' and "bending'' solutions representing extensione

al spring deformation and bending deformation in the plane of the spring,

respectively.

The bending solution, which will be found to present the greatest phe=
nomenalogical complexity, may be examined from the viewpoint of a supers
position of eccentric effects upon an (almost) axially symmetric solution.
The coupling of these two separate effects, which in combination with the
other analytical results of this program represents the complete solution
to the spinning motor spring problem. This report emphasizes the various
aspects of the symmetrical mode of deformation of the motor spring; limit-
ing discussion of the eccentric effect to its preliminary aspects. The impore
tance of this latter mode of deformation was only recently determined during

the course of experimentation. Later work will explore it more fully.

3., 2




3.2, TORQUE-TURN CHARACTERISTICS OF NONSPINNING MOTOR SPRINGS

3.2.1 GENERAL REMARKS

Study of Frankford Arsenal drawings, photographs and experimental
torque~turn characteristicy which are presented in the following figure,

indicates the following general conclusions regarding the non-spinning springs

(a) Experimental Torque-Turn characteristics indicate a discrepancy

between wind-up and run-down curves.

(b) The area between these curves is indicative of the: energy lost to
the system, i.e., the excess of energy required to wind the spring over

that released by the spring in unwinding.

(c) Spring energy losses during the period of interest (the run-down
cycle) are indicated by the area between the "ideal' run-down characteris=

tic and curve; which ia a ''"mean'' between the wind=up and the run-down.,

(d) The basic shape of the characteristics are often overlaid by cyclic
perturbations corresponding to local disturbances in the geometry of the
spring=barrel-arbor combination; indicative of additional energy losses due

to friction between local points in contact.

(e) The torque turn characteristic normally changes its character at
some point in the wind=up or unwinding cycle, between a linear and a non-

linear relationship.

(f) There is another basic change in the shape of the characteristic at



the maximum number of turns (i.e., when the spring is wound ''solid"),

at which point the slope of the characteristic changes radically

d? —p Very large),

The element of area on the preceding curve, which is Ta’?’ » Tepresents
the elemental energy, a/[ « Thus the single cross=hatched areas shown be-
tween the perturbed characteristic shape and the non=perturbed wind=up or
run-.down characteristics is a measure of energy loss due to friction imposed
by local effects (intcrfcrence between cccentric portions of spring). Likewise
the cnergy loss between wind=up and run down is ropresented by the overall
area between the two curves, whereas the available energy is that (double

cross=hatched) enclosed b, the run-down curve,

In the following treatment, the effects of friction are not considered.
Those cffects, which are of great importance in their own right, are not
first-order considerations in the present problem of the spinning motor spring.

Further, this section will be limited to theoretical derivations of the necessary

equations.

3, 4
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3.2,2 DETERMINATION OF TORQUE-TURN CHARACTERISTICS IN

LINEAR RANGE

L4

Many references may be found which deal with the spiral spring in the

condition wherc adjacent colls are not in contact. (e.g., Chapter 27 of Wahl's

""Mechanical Springs') The relationships to be found in these refercnces

take the form:

where f:
£7+

“

REL ~

T=—§—l/<50

torque delivered to arbor by spiral spring
bending stiffncss of spring section

spring length

number of deflected turns undergone by spring

constant depending on prescribed boundary condition at
outer boundary: fixed end %71 £ K < 1,25 &= pinned end

The problem which arises in the applicativa of this relationship is gene

erated by the incompatability, in practice, of the definition of ¢ with the

l
requirement for non-contact, i.e., when O £ SP < % some coils are in
|

contact, Thus, in the normal course of events the important position of

zero torqﬁe occurs precisely in that range of values of Cf where the clasi=

cal solution does not apply.

arber

coli 1 coutact

baerel
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Thus, in the barrel, the spring delivers zero torque at some non-zero

number of turns; which is beyond the validity of the classical solutions.

Tﬁ | T T
t GG

-
-
=
o // Jo( f‘ bur"/
750 for sprivy = comstraint a=d
m bam:/ // coil contact
~~
~ 7 > 7
. do ~ Z:f‘ /
Spr Avm 1 ref .
w@f’in ,ga“'___:—/r co-'ufmmt
.ﬁnrrli’//' = z
.s?;r? ‘&fﬂ €0 ‘f‘c 7;{:/ 97 T = Fraenn
lnlair et
bafr / ’Pr"‘3 ’f""’

In recognition of the ambiguity of the location of the point 90 20,
due to the barrel constraint and the resulting non-linearity of the solution
for Cfé (ﬁ » the linear solution may be used only to find the slope ( c':fé )
for values of 907 (ﬁ + Further, it is sufticient to arrive at thc proper
solution in this linear range, at this time, since the spring is always used
in the range g?> ?«. range for time fuze applicatious.

4T - g £
dcf‘Kl

Given the slope, within the range of interest (i.

one may integrate to find:
£T k
= 5 +
7 7 ¢ C .
which differs from the conventional expression only by the constant, C .

Any boundary condition can determine the value of C ., but since the zero

boundary condition is submerged in the non-linear range of the solution, the

3.7




boundary condition at ?&L\viu be utilized.

Thus, using the notation I= Tuw- at f—‘ ?m » the full expression

for the torque=-turn characteristic is found to be:

VAN E;JK ( P =)

In the above expression, which is valid for the linear regions of the char-
acteristic, 7;“’ may be supplied from experimental measurements, or

analytically as shall be discussed in the following section. It is to be noted

that the limitations imposed by the theorctical assumptions do not seem to
be important limitations in the corrclation between experiments and these

these theoretical results.
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3.2.3 DETERMINATION OF MAXIMUM TORQUE ( 7....)

3.2,3.1. Total Sgrlna Torguc

A frec body diagram of the spring and of the arbor will illustrate
the relation between the moment, Mf_, » and the torque, T-w o Assuming
a simply supported end at the barrels

1 4 Mﬁ/f\/ s

LM,
f’l . AN . ather
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Equilibrium equations result in
z':" ’ Pfo *Ml
7:"' ) Pf ! M‘('w

or combining through the elimination of P » there results

/‘4,0 - /41 (’k'i)
e = ) ()

For the case where the end at the barrel is pinned /‘4, 52 and

7';11‘ d %k)

‘Further it can be shown for the elastic casc with a fixed end at the barrcl

that /7 :0 and

.7:'" = /\47

In general we can write

Zn[ 4 K/ MY
where for the elastic case

) = ;-1}#‘4!/
end

T z S

Further, since the spring unloads and rcloads elastically, even when it has
recei' ~d a prior plastic deformation to achieve its form from the flat stock,
this value of k, will hold in general. Cases other than pinned or fixed end
can be considered separately but we can assume they will be within the range

indicated above,

3. 10



3.2.3.2 Elastic Case

The torque, T , which can be exerted by the spring, in its most
general position, is determined from that moment associated with the
spring in its fully wrapped ( fr ?’jw) position as was shown in the pre-
ceding section (2.3.1).This, in turn, may be found on the assumption of
an initially flat spring (i.ec., prior to assembly in the barrel), without

radial pressure, Consider the fully elastic case:

P
- i
., = 7
where /‘Z’ -maximum spring moment at ? g
may

f: smallest radius of curvature of spring coil = arbor
radius when spring is fully wound.

Howcever, it will be found from later numerical considerations that this
casc docs not apply for the fuze springs under consideration. For these

springs the plastic case must be considered.

3.11



3.2.3.3 Plastic Case

The spring when wound, from an initially flat state, and subjected
to an enforced radius of curvature, JD , however, may be in any one of

the following states, with regard to its stress distribution:

GanS 04 Omas = Oy

* =
! (RS

M= Metntic M= 1

A = beaw f‘fé‘ncs.s (all :«.se;)

| Omax Z 04 A Oman = Oy

s—— ————— 3 -

E]— —————— -J-_L,' 4 [M -

T — - - — — — — -

M'_M//q/ul /L/:M/‘A'”".--,

For the range of values encountered in time fuze motor springs,
case III must be considercd. Note that the maximum bending stress, O:‘“ s
is equal to the yicld stress, 6_‘1' , in this case, as well as in cases Il and IV,
Ip this casc, however, there is an elastic core of thickness h ’ ; thus II and

/
IV are special cases of III, with /" equal to zero and to /A , respectively.

Thus th¢ moment at the arbor (for case III) can be shown to be given

b, t;he rclationship
M= b [(2)-5(2)]

3.12
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where

é = spring width

4 = spring thickness

/
6 < elastic core thickness

The core thickness, A » may be found in terms of the radius of

curvaturec of the spring considering the clastic deformation of the corc, i.e.,

6_
Zf F

Substituting this relationship into the expression for the plastic moment,

and noting that (, M/Iasm g

o [ (8)" -

It may be noted that this exprcssion can be written:
7 = 2 -
/ma;x K M«,ia// [ 2

_b_‘_l"
ey (%)

/m,

to be:

o

where M7 eld =
So that the condition

that:

Srin, =

Thus: for f 4/““;, ,
for / ‘/”"." ,
for / >f"'"" ,

7:“’ » the maximum spring torque is found

5 ()" ]

7 (55%5)" ] |

see case lI, previous page.

= K M7;¢// when  p= i implies
Eluste
- / For initiation of {
-2 ﬁ plastic flow
- 2
7 i

[8)- 3416707
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Note that subsequent to the initial deformation of the spring (pre=-
sumably during the manufacturing process) the spring upon unwinding and
rewinding, will return to the 7:.., value in a linear manner (even though

7,;; may exceced K,Myield. for f< ﬂ.;. ) . This statement would be
strictly true for an ideal elastic-plastic material, and for a ''non-ideal"
material is closc¢ enough for our present purposes, For an ideal clastic=

plastic, the stress=strain curve has'the following shapc:

o ‘r
e
__éé:é_@__,..__zi/“ sthe
N S Ffrara straia

Thus, for multiple deformations the critical elements behave as;

/]

elaste rumae

Ty ——> lastii ranae
w1 Tial Seformatiow i'/ﬁb/ I eloPatlion




This elastic-plastic loading-unloading cycle on the outer fibers, com=
bined with the elastic loading=-unloading cycle on the inner fibers, results in

the following stress distributions:

7 Stress o/i)fr/'éu'ﬁou Ju(}q
r— /ﬂ/fl“/ VJEJ{G"P'R {l.ﬂ‘f 7
:_ M: M//Mf:’:
+
.—
"; /'n/'f/.s/ walow a//'«J cy cle
]
residual stress distributioq
i unlowded .spn'nj with
M =0
+

?)?/ Juésefueq/' load 4 57':/6
é ( lin'tar disfribution)
1

? total stress oistributioa

after ax l(ocding with
linear distribu ljz'ou

Mz Mplasti

Note that the ""apparent' loading and unloading cycle is:

_f /fa ” ‘tj

and that the residual stresses are unobserved.

“—-G-—')67 S >

il oceclsire,
J




Thus the value of 7:,,‘ is independent ’of the number of wind-up
and unwind cycles imposed on the spring., The torque=turn characteristic
( 7- Cf ) is linear for a range of values of torque up to and including 7:4,
This portion of the curve then is fully determined. The fully unwound por-
tion of the curve falls in a non;linear domain and, being of less interest

at the present time, is not treated in this report.

3.16



3.3. SPIN EFFECT ON MOTOR SPRING

Let us now consider the effect of spin on the static torque turn charact-
eristic (as discussed in section 3.2).The following assumptions will be util=

ized in the ensuing study.

(1) The spin environment may be rcpresented by a centrifugal field

only, i.e,, Coriolis effects are negligible.

(2) The centrifugal field may be represented in a quasi-static manner,
i.e., transient effects and other inertial effects are not considered during

the initial stages of the investigation.

(3) The bending and '""membrane' effects due to the centrifugal field may

be treated as uncoupled.

(4) The axisymmetric effects may be treated as uncoupled from any

cccentric bending effects.

Assumptions (1), (3) and (4) are made at the outset in order to facilitate
the investigations; they may actually be proven valid at a later stage in the
investigation, thus becoming conclusions. Assuption (2) mercly serves to
indicate that the initial investigation seeks a steady-state solution to the prob=
lem; transient effects will be considered later, and required modifications
may then be applied to the steady-sfate solution, The steady-state solution
yields insight into the mechanism under study and is necessary prior to the
more complex transient solution in the course of new analytical investigations;

the transient investigation may never be required.

3.17



3.3.1 "AXIALLY SYMMETRIC'" SOLUTIONS

A spiral is by its geometry, unsymmetricals For axial symmetry,
rit+Sct) =r (o)

must be everywhere true (i.e., for all « and for all Sa ). For a spiral

this is not true but it is almost true everywhere. That is:

r{k+d ) =risd) t &

wh ¢ X < any spiral angle

;(x -~ change in spiral angle

T
dr

3—& - "pitch of spiral (constant in Archimedean spiral)

For the special case of interest, where & ->0 (large number of coils),

half of any coil is closely approximated by a semi=circle.

The following treatment wiil initially be limited to those facets of the

problem related to the '"quasi=symmetrical' spiral.



3.3.1.1 Uncoupled Extensional Deformations L

In view of assumption (3), "membrane' and bending effects may be
treated separately. Membrane, or extensional deformation, effects will
be treated first, where membrane cffects are understood to imply effects
traccable to net force resultants due to strcess distributions across the
cross=section of the spring, Bending effects, on the other hand, are under=
stood to imply those effects traceable to siress distributions,having a net
moment at the neutral axis of the spring cross-section. Thus any linear
stress distribution is merely the supcrposition of the membrane and the

bending stress distributions, as shown below,

[wear stress dist. Jronchrane stress beu «lerj Stress

‘ 1

% 4 o-

1 "y ‘
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In the following an energy approach will be introduced; which is only

one of many techniques which will be utilized.

Dased on th¢ '"quasi=symmetrical" assumption, one may develop,

for the cxtcnsional case alone, the following analytical model. Assuming
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that cach coil may be approxin .ted by a clrcular are (leo., ﬁ fd asr
for JcA < 27T ), the following idcalisziion will be utilised:

S pring Extensional [dealization (peasi-symactuial)

The clement of spring length, for the ‘ bt coil, now appcars as:
t 4 w.Jm

Thus, for cquilibrium:
Nameotr®
‘ , ‘
and the radial growth ( & ) is given by

. Mo oo
M'AE'

where the membrane force, /V , is constant for any one coil (i.c., for

cach circular arc).

The theorem on total potential encrgy of a body (which may be found
on page 173 of Love's "Mathematical Theory of Elasticity") states that

Z W~

3.20
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where the total potential, Z M » is equal to the sum o! the internal (strain)
energy, [/ , of the deformed body, minus one-hall the external work done
on the body, f W (in this case, by the centrifugal forces) in deforming

from its unloaded state to its loaded state of equilibrium, Since only "meme=

brane' cffccts are now being considered the subscript 4 will be used, Thus:

.%M.—

where

= ‘er 2ud T (ar<<r)
L
= stress resultant of membrane stresses
AE - spring stiffness in stretching

l s 1e ngth of lpring

S, ﬂ * arc length and angle respectively, measured
around the spring

I = radius to generic point on spring
M ¢ mass per unit length of spring
¢V £ spin rate of spring
U ¢ change in ¥ under centrifugal force (‘# W'y ”JDQ)

W
Integrating % for each coil, one finds for the « £ coil:

W,

2T m ot r:." U,
Thus:

Wy = 27%m co Z(ru)

‘ll

where the coils are denoted by enumerators, ‘ y ! VAVER N4

Likewise, one finds:

Uy: 77 z V),

‘Sl

3. 21
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Substitution in [} - £ W, = O . ylelds:

2 (/V"r)‘. -mAEc.J"Z" (rru);, =o

PR i

ZL g

L

Substituting the / ¢ coil displacement relation:

N
“s RE

the general expression for all coils may be written:

2 (NVr).
2 (r’V);

‘.'l

;
:

¢4

The above expression holds in general and, as can be shown, for the /

and)t-" colls;
.t Nr
A._/:_..'; = 4L :ma)L

)
0. I N
Ve 5t

or
—é/‘i_ < 40“.’Jonf = M")L
AN
' - !;'H'Jn
A 7
[ -
arbor
3.22
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This is the result that is obtained by an equilibrium analysis of a
hoop (or a thin cylindrical shell) of radius r and body force equal to the
value M&"'r , The mechanism involved in the stretching of the spring is
akin to that involved in the stretching of the hoop; an orde»of-magnitude
estimate of the value of //* M (i.e., the uncoupled membrane force, alone)

at the juncture of spring and arbor can be arrived at by
Nzmeo®r®
/ [}
where: /l{

4
m = fA ( mass per uait /enjf()

W

spring membrane force at arbor

arbor radius

The additional torque due to a spring membrane force of this magni=

tude at thc arbor is simply

- L3
Tz M1y = mesty
For constant ¢ , the value of ﬁ is approximately constant throughout
the unwinding cycle, except when the unwinding angle, (f » is close to the

limits, zero and At these points, and close to them, various parame

Aup *

eters are affected by the fact that coils are effectively taken out of operation

by being pressed against either the arbor or the barrel.

The membrane effect on the value of T./ found for the particular

case of the spring configuration being investigated

A wz3140 "
” '3 ¢ -
é’ ’ /)’ m = 3-7_6 lbh Hesec - 19
hz.ol”
3.23
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is approximately 41 /i-0¢ , which iy about 1.2% of the maximum static torque
of 20.5 ine0z. A percentage deviation of this magnitude may not be coullgl;
ered important, It is to be emphasised,
however, that this represents only one portion of the total dynamic effect,
so it will not be investigated in further detail until all the effects are exe

amined; and is subject to further experimental verification,

3.3.1.2 Bending Deformations

3.3.1.2.1 Axi=Symmetric Deformations

Axi-symmetrical" bending deformations represent a redistribue
tion of coils within the radial confines of the barrel and arbor, as the spring
is spun up. In addition to these boundary constraints, spring bending de-
formations must satisfy constant spring length and invarient total number
of coils (since the spring is taken in a éosition of quasi-steady wind position)
conditions., These reflect the conditions which must be imposed on the de-

formation since membrane extension was found to be small,

All deformations which represent geometrically possible coil

distributions can be classificd in the following manner:

Class (1): Uniform distribution which will be assumed to correspond to the

initial undeformed state of the spring.

(Let #,, Ny, and 713 represent arbitrary numbers such that
h, + AN + N 4 = 11 = total number of coils of spring,

n:20)

30 24 ‘:




P pem Ewm e BN,
L

i

.
-
{*)

PR
8 4

Then class (2) and (3) deformations may be defined as:

Class (2): outer coils move outward (toward barrel)
inner coils move inward (toward arbor)

coils remain stationary ( in class (1) distribution)

S 33

Class (3): outer coils move inward (toward median radius)

inner coils move outward (toward median radius)

=N S

coils remain stationary (in class (1) distribution)

For further consideration each coil will be taken to have a cone
stant radius ( 7, ) with an intercoil spacing ( 27, ); which greatly simpli-
fics the cnsuing analysis while retaining the important basic physical parame

eters, Thus the above figures are idealized as

ty

q‘, = radial deflection of ".'t‘“coil. (positive sign taken outward)
’ 3. 25




It is understood that in this schematic representation the coils are cone
sidered "open'' so that no membrane stress exists and that each coil occu=-
pies a full 360° (except possibly the first and last) transporting whatever

material is required from its neighboring coil.

~

The foregoing classification as to types of deformition. facilitates
the utilization of the thedrem of minimnrm potential energy. As stated in

section 15 (Mechanics of Materials) of the McGraw=Hill Mechanical Design

and Systems Handbook, the theorem is: "Among all states of strain which

satisfy the strain-displacement relationships and displacement boundary
conditions the associated stress state, derivable through the stress-strain
rclationships, which also satisfies the equilibrium equations, is determined

by the "minimization' of ﬂ where

”:L.UJV- L'M(p,u tp,vef ) dS

where ,0—, ) /0-., ) /3e are the Z, 7, Z components of any prescribed sur=
\

face stresses, '
The function ﬂ may be expressed, in the notation of this

I7=0-w

where U= total strain energy of deformation from equilibrium position

report:

to any particular deformed position, and W= work done by centrifugal

forces during the same deformation.

The following highly simplified example is illustrative of the man=

ner in which the above theorem will be utilized in this report.

3.26
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Example:

Lot us find the deformation of a simple extension spring (spring cone
stant # £ ), under tho influcnce of a force F » with preload ;.' .

w/an I— §
position

MMOJ ﬁfo .
positioy louded
position

Let us consider S, the equilibrated deformation which, in this case,

satisfics the cquation
fo-S k 0
The thcorem of minimum potential can be applied to either the original or
the preloaded system to provide thc same result; except that in the former
the prcloaded cquilibrium cquation must be known and utilized.
(1) TotalSystem ( §>°)
W=k (55 )¢ FS
U=tk (l5)

hence ﬂ é‘ CSe ;) -[FJ+h (;'5)]
7= 45 [5- 27, quqd-‘[f» 2£]

(from 7.»/ b piseemt efuﬂ‘lﬂ)

"

It is now nccessary to minimize ﬂ with respcct to all possible variations

in 5 « This could be done by sctting %}’Z:O . However, since this

3. 27
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technique may not be applicable in this report, we will consider the most
general illustrative technique of actually presenting the result ;uphicauy.
For this purpose we plot 7 vs. J Fer S0,

i

$>2£

A8 5]

We see that the minimum J/ occurs at

. £
7

which represcnts the desired solution,

(2) Rclative System (" J>0) ’

In this case we consider only the perturbation from the equilibrium
systcm so that it is not necessary to utilize the preload equilibrium equae-

tions (no matter what their complexity). Thus
W=F3
2
4 kS

S
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hence
T=5kS*-FS

m-4%[5-2£]

which plots similarly as

m

’I10e0 ey

and yields a minimum where 5-’ —f— » which is the desired solution,

For the purposes of the work of this report we will always con-
sider the spin perturbations from the non-spin equilibrium position; which

greatly improves and simplifies the minimization procedure.

3.3.1.2.2 Elimination of Class (3) Deformation

In order for the assumed deformation pattern from class (i)
to any other class, to be possible, the function ﬂ must decreasc,

Thus

77“) <0 is required

Since / 7(0 = 0 i s the reference position,

3.29
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Howcver, IT = Ua) - h/(:-ox)

thus, the possibility requirement becomes

U‘., < W‘l"')

but, [/:,, >0 for all deformations

thercfore it is necessary (but not sufficient) that
W(/-’X) >0

in order to satisfy the requirement.

, 4 '
The work for the ¢ ¢ coil, in moving from the non-spin position

to the perturbed position, is given by
27 dm

W = | (mr,ddf) ©'r &
’ 0

and the total work of all the coils due to the perturbation is,
”
W = 2Tme' 2 by,
,':l
where
[+ average / £ coll radius

U change in i coll radius,

Now considering the class (3) deformation
U, <o, n, ¢ oils v 12y, )
U, =0, n; wils Ly €% £ N,

U, >0 , n, cols - r

N\
~Ns
[

x

and using the absolute magnitudes of deformations, we can rewrite the work
as

W= Zme’[-é‘ rtlul ¢ ﬁ'n ‘/u,-/]

i

3.30
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Considering the upper bound
] OJ. . i Ay
/7 /
W"z”""“"["’mZ/H:/ S r(.n (Z:'/U‘/]
¢ 3 ¢

However, considering the total coil length

“

L, = ZFZ s (Aon - spranine)
(3

e 277‘§ (ren) Copinaing

But from the requirement for constant length

L, L,

A n
2 = 2 ()
":I i

¢

which requires

(sl

or
) ()
Ztul = 2wl
¢t PRl

thus

'} 3
» '

W= 277'"“)‘24/”-'/['8) ";u]

3. 31
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since /3 46
W < o

which is a direct violation of our requirement, so that class (3) deformations

cannot exist.

3.3,1.2.3 Axially-Symmetric Bending Deformation Pattern

In accordance with the idealization set forth in preceding sections,
the spring sysiem, with its governing equations is presented below for refe

erence;

outer (bavrel)
constraimt

]7' =U-W 5 Potential function

“
t 2
e IW co'm rou,;

W=z W o Energy Expressions (See
U = ”EIZ _u‘,% » Appendix for discussion)

. r.

(et ¢
Z”; U. = - = "Constant Length Condition"
e ! insures that length of deformed

spring = that of undeformed
spring.

' 3o 32
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It {s required that ” be a minimum, within the bounds of the

constraints of the problem, This requirement may be formulated as:

—Q—Z =0 = —2—,—] + .’l—’z .‘lg_'-
;”" )U.’ U, ;“o'

(af () (ivn)
which together with the constant length condition, as written below, defines

a lincar set of equations:

Ae +Z U, =0

"ll
From the above form of the constant length condition, one finds that for
9
any ¢ ¥n
a.{:(-’ ‘_—_ '-/
2U;

and from the energy expressions:

(i#n) g_.f%' = zﬂ-wl-mc,a
DW - ¢ L4
3-;(’" = 2776‘) “ [,
((Eh) -325 = Z2WET —1—'—;
oU - 2mEr 4%
oUn . "
Thus, the equations may be expressed:
3
U =R = KBRS /) ,Cifn)
Z U, =
£8 5
where, P ot r,
£7
= Ui

Y AR

T
= fA ( mass Jeu.r/f7 X (ro&!‘.ftbfl"ﬁ"/ area)

3,33




Solving for U, (#7) onme finds:

L/‘- :(/ZjJ (2.'2‘/) +/?‘-3(/‘4

Substitution of the above value of (/. in the constant length condition equation

A
2. Y. 70 yields:

é
LR

er K (B'-1) Zeu

Therefore

u, =

Z/? 2 R (R-1)
N s i ]

43

so that all (; can now be calculated. It will prove convenient to take I,
(at the arbor) since it is often sufficient to compute this value alone in the

evaluation of spring torque. A sample calculation is presented in the AppendlzB.

In the event that coils bottom out against each other or the barrel, or
if % V- then it is neceasary to proceed with the ''new configuration' step
by step in an iterative procedure. To examine this iterative process let us

proceed as follows:

The following definitions apply to this analysis.

Let ¢4
Az total number of coils during s iteration

j = iteration index ( jf-" iteration =~ present iteration)

( = coll index (/€< n)

Then the "non-equuibrated" incremental force (acting on the / 1F ~<oal, during
the ] & iteration) is given by

(/'—/)

AF = (dwm wzq )q')_ (dm o1 )

3.34
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and the additional it coil displacement during the } % iteration (not the
total /% cotl displacement) is (U, )! » Thus the ]" iteration work done
in coil displacement is

W3 ()P 3 (o, [ar)?

(2 PEy)

Expressing the differential mass in terms of a differential coil length (of the

form rJ?). for the ]ﬂ and preceding iteration:
(’, ) (j'l’

dwq)-m(r) "j" qu *m () c/Cf

Thus the expression for work becomes

tj) ’ 2 ‘I.') (j -t) ]
W Z’)’mZ[w (f) - e (u)

Ll

or

W Y = 27m ca(’)Z, (»5) (ru)/

‘.’l

where

S [1- (57 ) (Er) ']

In order to minimise the potential, 7_ for the jd iteration,
analogous to the noneiterative procedure (which corresponds to .ae j =1
iteration), the strain energy, U q,. expression is likewise required, U L
represents the incremental strain energy associated with the change from
the fj-ﬂ to the ¢j) position of all colls, i.e.,

" e
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Likewise, the constant length condition must be employed for each
~iteration. For the }-ﬂ iteration, it is required that

[ ‘J’)
Z (4) =0
| -z

where it is to be noted that () represents the additional displacement

which occurs during the j'j iteration,

Thus the governing equations have been found to be expresstbls: in

the following form

cr’ of ) |
J7 Ve i 4 ‘W‘J' | ¥ Pectial Foctin

t
Gg° i) 2 ;)
We 2omar? > (50" cetun’

§3r

) _ “ M-‘ (/’)
(g 2 Coit)

"J’l

Lon erqy l:.layrméks

. ) e .
Z (e,) K =0 = Cow.s/aa{ La-v, +4 [OnJ:V/éu

(st
Note that for the case j'l » the above equations reduce to those pre-

(
sented for the non-iterative case, since 8‘. =1,

)
It is required that 77 4 be a minimum, within the bounds of the cone

straints of the problem. This requirement may be formulated as:

G ¢) (P ¢
1AL L ANIEPY § B I P
D) 2:) T D) ) cu)
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which, together with the constant length condition, as written below, defines

a linear set of equations:

@)V + 3 (u)? =

£t
From the above form of the constant length condition, one finds that for any
F#En .
>Cua) P y
DCu)

and from the energy expressions:

o c
(irm Slyw = 2mm PS5 Pl

t

W P
Jcu)
yU “P o, P
Cirn) se = 2TEL —-777‘

U P L
)D(/u:)‘f’ = 27ET P

- M P i)
= 2 m & S‘ljr.:

Thus the equations may be expressed:

) ) i D ¢ P
u'q_f‘ (j Kq e i’ [ q)‘_/]

4

Z (‘4;)

s/

‘==m—m—nn———mm—nm._—-.[

i

Where (,-) r‘-' (i)
z‘v = —TI,
(i) f:’

/d. ]’ = 3‘—(1,

¢

K -

wci) ‘) e
med (] S..’

3.5
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Solving for (u;) ', ¢/*%) and for (y, )" , one finds:

: o 3
) G) o P ) = 2 g
KPR 4 PR 1] e

A\

A=/ 9.,5 1o
(i) Kc,‘) 2R TR ]
A, = - 7
) Iy Z:l" (‘ 0))
i~

Again it is found that for the case j” » the above expressions re-

duce to those of the non-iterative case, l.c.,,

for j’l ’ ;S‘. =/

) _
and J" = / 5.0
thus ,4,‘” s 3.77: e /
. "
Therefore

’K'?;’['?.- 1] *ez""*
|2 R Ie"i]

l/! " fz

which, as was expected, are the noneiterative expressions, (4‘. and ¢/, »

respectively.

Note that, in general, the summation {s over the # =1 coils which
are not touching, The number of coils which are touching is variable over
the iterations, i.e., ﬂ, (j: /) # N, (j? » Thus a symbol of the form n(j)
would be justified for use as the summation limit, but would add additional

complexity to the notation without being necessary.

3.38
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The iterative expressions for the displacements, « , are not simple
functions of &* or of /' volnce S and ¢ contain 'w‘ﬁ,‘ » Therefore,
to solve,a true iterative procedure must be utilised, so that w't is always
known from the preceding iteration, Then selecting the new cv -w"’. the

constants may be calculated and the displacements obtained.

This is shown schematically below for two collés, the (% and x é
with radial position, r" , plotted against spin rate ¢~ ., Note that the
displacement, which is added to those preceding it, is associated with the / g

iteration, Thé . j t iteration, in turn, extends the range of the solution from
li ¢".0)
*

c..’
u'r
¢

(i", 2 (")
the preceding limit &/ to @ by starting from the base r; (=1,

o/
fm4 i enil p ”;@ ;rf-‘.«.i//
«w
|
L :
Wt J t.'t'/c\rafo'o‘v N ﬁ\\\\\\\\\
A)'H" & ‘

' )
I L B kP q‘f e

Y77
W%
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In the same manner, the following iteration will extend the solution

cive) 5 )+0) e oo
to ' from &' by starting from the base [ =T P, u. 4 and

o ‘-") . '
calculating u,.’ . The only limitation upon this progedure is that each

iterative step be sufficiently small so that the ratio
aq-v
r
-;,"7/) &/, .

‘

) «1)
In certain special cases where l/‘ ’« r(i we find that

S

AP~

¢

Therefore

Thus the iterative procedure may be pursued for any number of

. !
cycles, ] , without limiting the break-off point to that at which the ef-

fective outer coil is removed from the .system. The range of each cycle
can be made as small as one pleases, thus yielding a mechanism for in-

g)
d for each cycle of calculation. This special

suring the condition u,-"',“ A
case was utilized in the special example computed in section 2.1,2.3.1;
but its validity would izave to be verified in each application, so that it is
better to use the more general relationship for /J‘- ‘f,

3.40
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3.3.1.2.3.1 Example (Spin-induced bending deformation)

Interpretation of the foregoing expression for the deformation,
U , will be facilitated by considering a numerical example. For this purpose

the following set of physical characteristics will be assumed:

A=ot"”
| 1
| |

be.15”

; /I

/ Spring cross -Secthon

avhor radyus b

N il

f-J' e . 375'”

It will be assumed that the idealized spring for this example
(i.e., the spring with circular coils) may be represented by the coil radius

distribution
Yy =,/ +.025/ P ) €. 20

0 \
|
Thus the length of spring, / , is found to be /=, 47577/(‘ zﬂ.; f /

and the inner coil ( /=, 125") is separated from the arbor by a clearance of

3.41



(.125 = .11)= ,015", Note that it is assumed here that the position of the
spring coil is determined only by the position of its centerline, and that the

physical thickness of the spring does not cause interference.

With this inner coil clearance, it is implicit that the inner

coil motion Ay, from the fully wound position of the spring is likewise,

Ar =.015 "
Thus for the non-spinning spring, the torque decrease from the fully wound

position is given by (fixed, end case):

- Ar
AT = £] F=
Using the numerical values
E = 30"/0‘ ,Jc‘.
I s 2 lh® 2 0128 us0-¢ in ¥
rFo=.1 i,

one finds

AT: 244 ih.-&?.

Thus, this hypothetical spring has unwound to the point where its non-spinning
torque is decreased by the amount 7.44 in-oz. This corresponds to an unwind-

ing angle ( fw' jo) as indicated in the linear elastic spring run down equation,

( fome = P
( Fns~ P

For this same spring, the maximum torque (at the fully wound

4 —
E‘? (7:‘;:— / )
2987 (® 3.95 furns)

position) is given by
Ep 5,4 67 iR 3 G E)

3, 42



Thus for a spring material for which the yield stress, o

70' 300 _.000 p.i.

the maximum (fully wound) torque is given by

7:., = /7 7/  ia-ee.

Thus the following nonespinning characteristic may be drawn

for t'.c spiral spring of this example.

(in-02.)
ol I A
771676 |
@2‘ lurn
backed-ofF |
__,-"’-RT:/0,27 fvo‘« f-t“7 I
.ot I wouad |
!
l = f«l/~l wound
I | Csolid spn'nj)
! |
| Iy )
Ro-285T7 F ?ia-)

The remainder of the example will be concerned with the
determination of the effect upon the spring, of spin induced bending defor=
mation; where the initial condition of the spring is determined by the point

on the nonespinning run down characteristic:

'T-'/(?,Z7 M. -0 ) 7'"“# -y = 75y 77 .
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! 'S,m I fJea/:'za//bn

"M 8/0 coils

The profile of coil deformation under these conditions is sh. '

on the following page, as a function of K + Note that a form of iterative

p— T NN RS e "
3 . . . o ShE L 5
g N GEN G GED OB OED OGN GNN OGN OGNS GEY o

procedure must be used here since at ,(* 20(inches) , coil #10 contacts
the outer constraint. For this reason, a second cycle of numerical calcu-
lations is initiated at this level of K with a nine coil spring and initial

radii (I (£ )l which correspond to the final deformed radii of the first cycle

calculation (r: ¢ u;/‘"" ),

This process is continued on the curve, with succeeding coils

being effectively removed from the system by conforming to the shape of

3.44
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the outer casing, with increasing K . Fora given spring configuration,

wl" r‘.
increasing A implies increasing spin velocity, << , since K= —(=

EL

Thus although the deformation expressions utilized in this section are linear

with K , they are functions of the square of rotational velocity.

Notice that the maximum values of «; in the preceding example

are:

Cycle U, (max) Corresponding It % of I which = /i
1 .025 .350 7.1%

2 .041 .334 12.2%

3 .063 .311 20.2%

This indicates that it may be desirable to make the later cycles smaller in

order to keep ({ about 10% of r,;; or to utilize the full solution for ;.

The motion of the inner coil is of the greatest interest, since the
position of this coil indicates the bending torque being supplied to the arbor.

The change in this torque is indicated in the following section.



3.3.1.2.3.2 Torque Sensitivity to Spin in Eximple

The important torque values to consider in interpreting the
spin sensitivity of the spring, are shown on the following curves. The torque
associated with the spinning spring is found from the geometry of its inner coil
(see preceding curve sheet, coil #1). Since for thc present case 7 is initially

equal to 10,27 in.-o0z.,

AT =027 - % ET

Thus (for this hypothetical example only) the maximum torque increase due to

spin induced, axisymmetric bending is 8% of the static value.

3.47
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3.3.2 ECCENTRICITY OF DEFORMATION

3.3.2.1 Evidence of Occurrence of Eccentric Deformation

The possible importance of eccentric deformation of the motor spring
was investigated by means of a preliminary test program. The results of
these tests indicate the desirability of continuing an experimental program,

as is presently under consideration.

The test which was run, was specifically designed to be in the range
of large values of K , without regard for other parameters such as torque
output, inner to outer radius ratio, length to thickness ratio, etc. No at=-
tempt is now being made to predict the range of parameters under which
eccentric deformation may be expected. A full analysis will be the subject

of later work.

The following photographs will indicate the nature of the eccentric be-
havior. Photograph (a) shows the non-spinning spring and (b) shows the
same spring (under stroboscopic light) spinning at 1500 rpm. The direction
of the motion of the main mass of spring with respect to the center arbor
and the outer end (reference) was found to be well defined and repeatable.
This direction was found to be very close to %— from the outer end, meas-

uring in the direction of the spring length.

3.49
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AAttempta to bias the stationary spring with eccentricity in a direc=-
tion other than g » were difficult. The dash dot arc on the following
photo shows the relative direction in which the biasing agents were forced
from their original (broken line) orientation. The final eccentric spring

orientation, for this case, was only slightly aifected.

3, 51
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3.3.2.2 Eccentricity of Spiral Center of Gravity

o
The natural spring bias in the f direction which is suggested by

the foregoing (preliminary) test, may indicate the importance of the geo-

metric eccentricity of the center of gravity of a spiral. This can be illus-

trated for a special case,

Assume that the spring forms a spiral of Archimedes, i.e., the
radius is given by
re=l = le

where
/, = outer (barrel radius

2 Tc = spacing between coils (constant)

Then a parametric representation of the spring is

/'Yz-r.f"’
7: r Ci;f

Let /7 number of coils (assumed an integral value for this discussion)
ioesg ?m,‘,‘ = k]zﬂ’
Then the center of gravity of the spring, (7?,- 7) is given by

> 3.52
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where o [+ differential spring length = rd ¢

\
The integrals are

Sdl (r-c?)d(f —-MZ”X{ necr)

"

jxdz: ‘j(r,-c?).sm?(r,-csp) J(f
n‘;ﬂ’

Jt] dZ’l(r,-c?) cos @ (Yo -<§) dﬁo

"

zn2r ct

Thus X =-2c¢
_ <
and 7 = Z¢ Ccr,-ncm)
7 - 2l zpaciag
7}—

and the deviation of the c.g. ( 7[7 7— ) from 7’: T is given by

X - f-n”/;,z/ z‘-~"/, =/

This is a small angle for most spring configurations, indicating that the

eccentricity is located approximately at
- T - =
(7 = 2 ’ f = 2/ . ZC) .

3.53
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J,3.2.3 Generalization of '"Axi-Symmetric Bending Analysis

In the energy analyeis of the axi-symmetric bending deformation,
it was implicitly assumed that the deformed shape of the coils remained
circular, ase in the initial idealizsation. Furthermore the initial idealization

was assumed axi=symmetric, This analysis can be generalized as follows:

(a) Allow r to be a continuous function of vo rather than discrete

;—‘—4.——-—'—.

valucs r , thereby changing the sum on ¢ toan integral on a’bq ’

-4

(b) Decreasethe range of each K, thereby changing the sum on
8 / ging A

to an integralon JK (oron dw )

(c) Allow the initial idealization to be eccentric and allow the de=

formed shape to be eccentric and non-circular,

[ ] [

I or the present, the implications of (c) will be considered in a pre-

liminary manner, since this direction of analysis shows the greatest promise

‘.;.-.‘

for the investigation of eccentric deformation. Initially the center of the un-

-

deformed (circular) coils should be displaced from the center of the arbor

(which is the center of spin).

P eu/er o/ AA Je/ormecj

colls

i arbor
cotrr of {barrel
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The deformed spring coils must be allowed to displace as well as deform

(still within the confines of the arbor-barrel constraints).

For this purpose the initial radius can be expressed

/:. (/f Z/___‘ cos Z/Q)

which assures that the initial eccentricity is equal to Z<¢ (see section 3.2.3).
Then rather than a constant deformation « ; around the circumference, a
rigid body rotation plus a constant deformation plus an elongation of the cir-

cle is allowed.

(1+2) rpu bodg motiou

plas constan ¢t
deformaiog

(o) imitial
Sﬁlf# e

(1+2¢3) r/j id boJ7
motion, coustan?
detormation and
c’/ouJ aZs04

This deformation is expressable in harmonics of a Fourier expansion:

U;‘[,() w D cos Nt £ ocos Z‘LQ]

raciral ri iJr boJ«L &/o"jarf,'pq of
rowtt  displacement shape
oﬂ crcle

The potential function / / must be minimized with respect to the

parameters ,(? ()‘ and £-‘ now, rather than merely ¢/ . i.e., in
/

3. 55
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The constant length condition, analogous to its previous form, is
only concerned with radial growth, K . The parameters Z)' and v
which indicate coil position and coil shape, do not influence the spring length.

Thus the constant length condition appears as:
A
z. K =0,
‘; =1

4
which supplies the n“ equation in /3 » where /7-1 equations are sup-

plied by g—e’-j_’; O (as in the case of ¢/ , section 3.1.2.3). The equa-
o ) .
tions gg.— o and '-.32-“ = 0 , hold for all values of ( including (=7 ;

thus yielding a set of 3 /7 equations for i ] D: and £ -

3.3.2.4 Effect of Eccentric Deformation on Torque

The important thing about the inner coil with regard to spring torque

position is its radius of curvature at its point of attachment with the arbor, In

the case of eccentric deformation, the possibility of periodic fluctuations of
the spring output torque becomes evident since the radius of curvature of the
spring at its arbor interface, is determined by the direction of the spring ec-
centricity. It appears at this time, that the direction of the eccentricity does
not bear a constant relationship to the orientation of the arbor-spring connec-

tion; but instead varies as the spring unwinds,

3.56




ooy iy Siiiang [S=SSF] ] ]

[ A W PR WO .3 [

[ 2 _.vnd‘

Pt §
A

In preceding sections, it was found that the direction of the initial
spiral eccentricity (and, based on this, of the final eccentricity) is approxi-
mately 90° from the outer end connection; for the special case of a spring in
the shape of a spiral of Archimedes, having an integral number of coils, It
would be of interest to inquire into the position of the initial eccentricity for
the case of an arbitrary (not necessarily integral) number of coils, as well
as the non-Archimedjan spiral configurations. This would be an impor. nt
part of the investigation along with the extension and modification of the pres-

ent axi-symmetric solution,

As was pointed out in section 3.2.3, the spiral's initial eccentri-
city can be accounted for by including additional terms in the expansion of the
axi-symmetric spring deformation expression. These terms, in addition to
allowing for initial (non-spinning) coil eccentricity, will provide for eccentric
coil deformation. i.e., in the axi-symmetric case, only radial coil growth
was considered, whereas in this case coil elongation and rigid body coil mo-

tion are possible.

In order to obtain an estimate of the possible result of eccentric

coil deformation, an illustrative example will be presented.

Assume that an arbor and the first coil of a spirel spring may be

idealized as shown below,

first cell

3.57
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Then, letting the above schematic represent the axi~-symmetric case for a
particular configuration, the illustrative problem will consist of the deter=
mination of the effect of non=circularity of the first coil, which would re=

sult from non-axi-symmetric deformation,

To this end a simple assumed deformed shape will be considered in
order to avoid obscuring the meaning of the results of this illustrative ex=
ample with prematurc complexity. (The results of this example will thus
represent an order-of-magnitude indication of thc possible extent to which
cccentricities can affect spring torque output,) The assumed shape will be
that of an ellipse,

(a) the circumferential length is taken equal to that of the first circular
coil; so that only deformations without extensions are being considered.

(b) the minor axis is the same length as the diameter of the arbor.

Thus, to be explicit, the symbols in the above figure represent:
r = first coil radius when circular (axi-symmetric)

A = arbor radius = semi-minor axis of elliptical first coil shap (with
coil length unchanged)

6 = semi-major axis of elliptical first coil shape

3.58
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The length of the semi-major axis, b » under these two conditions

( (a) and (b) ), can be shown to be approximated by the following expres=

sion in terms of axi-symmetric configuration, il.e., arbor radius, a, and

circular first coild radfus, r:

T .g: C1)

The equation of the ellipse shown on the preceding sketch is

z aNE
——6—‘-1 -+ 6,_ /

Thus the radius of curvature at any point may be found to be given by

. 2 Jz
f = (afy* +b'x ) 2
at b

At the points of maximum and minimum curvature this becomes:
t

7 (o) = %
snd f (a,0) = é%

3

Using the same numerical values as werc used in the previously mentioned

report (TR #64=11), take

a = Jn
f_- .lzn
E7]= .375 # in?

which corresponds to the spring in the example examined in that report,

b oy Gy GEEy D PEN PEI OUN BB BN SBD AN Sus EEE ERe

!ro—swy“

rotating at 34,300 rpm, ‘

Thus, from (1) and (3), one finds:

3.59
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6= .1257
/(o, b)7.0962
/ (C‘, 0)501435

Then the change in moment at these same points, from that of the coil in

ite circular (i.e., non-eccentric) position, is given by :

AM/ R = .’/: = Z2.0¢ in”!
(cb)
ol WS
_A/ = L - 1 - 37
r (a, o)
ET (d,0) Jf

This means that the first coil, if it remained circular, would impose

a constant torque producing moment, M . upon the arbor. However, that

samc coil, if it had an elliptical shape imposed upon it by the eccentricity

of its deformation, could impose moments which vary from the value M by

the grecedinj AM values. Thus with £/ «375, as stated previously, the

imposcd torque could vary from

P ey
Mm'vn

/ + /20 36 m. -0z

LT A

M- .22 ;n-ot

Jymaetei¢

to

!

depending on the relative arbor-first coil orientation (where M , at this

spin rate, for the example is approximately 11,4 in-oz).

Then assuming that the position of the arbor relative to the first coil
varics continuously around the circumference during a single turn of the

arbor in the unwinding cycle, the resultant torque characteristic appears

as shown on the following curve.

3.60
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T,

3.4, SUMMARY OF RESULTS

(a) For the non-spinning spring in a barrel:
: . £S
T- Z“" , 4 (ynﬂﬂl - 9))

where T: spring torque at any value <f
7: angle through which spring has been turned
60“; angle turned to reach ''solid spring'' state
£/ - spring section stiffness
A spring length
/ fixed end at barrel
k- mg

pinned end at barrel

b [I,(é)‘-ﬁ- () Ik, < fmem

Lojber gk o pufe
‘J
k:? 7% ) [ P

_éA z width and thicknces of spring section
E:
2

7

yield stress and modulus of elasticity of spring

JP - arbor radius

m':a;"?.

(b) Additional torque in spinning spring, due to extensional deforma-

tion only (membrane):
TA/: Ma)zf ) 7#0 "' ?4?“‘-,

where = mass per unit length of spring

"

m
(2% spin rate
y

n

f: arbor radius

3.62
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(c) Maximum bending torque in spinning spring is given by radius

of curvature of spring at arbor, as in static case

75 7;-,, (of (a) above)

(d) Change in bending moment in spinning spring is determined
/

by means of thc relationship:

AM = ET +

where
U, = radial deformation of first coil
rY = coil radius 2 constant
”
_ S RIR™D
and A T - _-_/—_2"?‘ =
and

AT < % AM

In the event that the colls "bottomeup' the iterative procedure to obtain dese

¢ ribed in this report is utilized.

J.oul
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4. PIVOT AND JOURNAL FRICTION

Technik has found that torque losses associated with pivots and journals
are attributable to a complex set of phenomena, of which the "conventional'
definition of "friction" provides only one portion. Thus the analysis which
was performed, and is described herein, serves to point up the additional
work necessary for the full understanding and description of the phenomena

involved.

The analysis which is presented here is the conventional "Hertzian'' elas-
tic contact deformation analysis. For the purpose of generating quantitative
information, this analysis is combined with a torque evaluation based on an
assumed coefficient of friction, although the value to be assigned to such a
coefficient is greatly dependent upon the nature of the physical interference

phenomenon involved.

4.1 ELASTIC ANALYSIS

For the precsent, although various geomectries differ (i.e., journals and
pivots) and may require somewhat different treatment, the pivot will be ex-
amined in order to expose certain basic problem areas, Consider a spheri-

cal pivot point in a spherical seat, as shown below:

-

£:50x105,;
p:.3

/ANy

t/
4.1
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Then from Hertzian theory, the radiue of interfacs plvot-seat coatact

is

as//09 ('e ‘7‘ =ZYéA/a"

and the maximum interface prcuure./, o is glven bLy

2 = d";f, = G780 ..

dpifn-rqri"
‘Pp'raf

res5uUré

J/;fﬂéu/ﬂr ff/

oy Pres)uce
~3)___|r s

(2) contact

radivy

The stresses at the points (1,2,3) shown above, may be shown to give

rise to the maximum shear stresses (for Tresca yleld criterion);

g7 o00 Yz

T(’)M¢I= ’ / 7‘
’gﬂ,.f .S 7e

297 000 psé

7

S hony /126 000 psc¢

=./37, (""E,)

)

Note that the maximum shear stress at the center of the circle of cone
tact (1) is .1 7, » wWhereas the normal stress is ¢, . For the ductile ma-

terials being considered, the maximum shear stress is a good indicator of

4.2
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the incidence of plastic action. This value must be compared to shear
yleld ( jf’ ) which can be taken to be 21;_ H 6'7' ¢ tensile yield of the ma-

te rl.ln

Thus, for many hardened o'teolo used for pivots, the stress at point (1)
does not indicate plastic action while the stress at (3) is probably of a
marginal nature in this respect. The stress, 3,',,".‘. at (2), however, in-
dicates a plastic zone below the surface of the spherical seat. It is ques-

tionable at this time, without further investigation, whether this sone ex-

tends to the surface (at (3) ). I it does not, the plastic sone will be elastically

contained and should not be accompanied by large deformations.

1, on the other hand, the zone reaches the surface to become unconfingd,

large dcformations may accompany the action, with resulting large frictional

areas and associated torques.

4.3
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4.2 TORQUES IN ELASTIC CASE

The pressure distribution between the spherical pivot and seat for the

elastic (Hertzian)analysis, is;

perl- @Y

thus the torque is given by

o«
7% [ro g dA)
Taking/llr constant
77t s
7} -"7' Z’ A /
Thus for g = 2.86x10=3 (16.4# load)

7: 27 # ﬁ/ﬂ—) g /6

or

7:/7/ n.- 02

It may thus b¢ noted that the torque 7 ,» lost at the pivot is directly
dependent upon the value oi/ ,» the coefficient of friction. A frequently

encountered value of this coefficient is (say) /4’. 3. In this case

T .05/ . /1. -0z (p=-5)

and values of/ may be found, as great as, or even greater than, unity
(seizing). The actual limit on attainable values of/« is imposed by the

shearing strength of the material.

If, in general, the frictional Iorce,/[ , at any point exceeds the

shearing stress of the material, the matcrial will, in fact, shear; resulting

1.4
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in a greatly accelerated wear process, The process will continue, always

causing the pivot and seat to conform to each other and increasing the contact

radius, until the friction force./uz' » no longer exceeds the shear strength

at any point. Thus, the contact radius having been increased, the frictional

torque losses will likewise increase,

To visualize the accelcrated wear process, assume the following highly
idealized rotating pivot-secat configuration, i.e., conical and flat, respec-

tively:

44 ///////f/////z///////
P
The initial pressure, 7 ,» at the point of contact approaches infinity, thus
for any value of 4 , el & T, where J, is a constant, ie., that value
of shear stress which will cause the material to shear, As the material

shcars the cone is truncated and the scat is simultaneously "worn' so that

a finite contact radius, <, is attained:

D

(00 s/
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Thus the interface pressure reduces as 9 increasss, until the value of
Mg atno point exceeds T, ; since, if this value is exceeded, shearing will
occur changing the pressure distribution, ¢ , increasing the contact radius

a4 , and reducing /4[ belnw the J, value. At this time "accelerated

wear' is considered to ceasc and the more conventional wear ensues,

Thus the question of torque losses rather than encompaseing only consid-
erations of geometry, material and "friction' linked by elastic analysis
should be broadened. Included in the investigation should be the additional
analyses concerned with

(a) plastic deformation of contacting parts = increase in contact area

and friction losses over clastic case;

(b) accclerated wear process - shearing of material and associated

friction torquc increase,

4.6
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5. BFEAM HAIR SPRING PROBLEMS

An outline of preliminary results of two hair spring problems investigated

by Technik will be presented in the following pages.

5.1 LI, k(T OF SETBACK ON HAIR SPRING

Statement: Given the beam shown below, find the maximum 'g'"
loading that it can support. Establish gencral criteria as well as specific

results for the genceral range of dimensions presented.

mo/
SJ':';;art I\
free "t-—-f[

R.m[-cs

= ,00330 - . 00008 (in)

= .C13 - .001 (in)

b
A
£:05x10°( # /ind)
9

L3 % / £ .45 (in)
3 3 L2
200 x 10°# 6‘;,, £ 250 x 10° (#/in°")

8,0006 77 £ 25,000 (desired)

5.1
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In the solution of this problem we will at first assume that there is no initial

warping of the spring; further work under the scope of the proposed task will

remove this restriction.

Remarks: The following analysis indicates that the limitation on
the capacity of the hair spring to resist set back forces may be provided by its
plastic deformation rather than its buckling configuration. Further investigation

must determine the more "exact'" limits of the two phenomena.

Approach: The solution was approached by two techniques; both of
which assumed the existence of a buckling configuration, and then by different

approaches derived their basic equations. In the first a differential equation

approach was formulated through the use of the elastic equations for bending and
twisting of simple beam configurations. This resulted in three equations, two of
which were coupled in their first-order effects. The eigen-values of this coupled
pair of equations, subject to the correct boundary conditions, provides the
critical load. Unfortunately because the resultant équation was highly non-linear

its solution was considered beyond the scope of this exploratory activity.

In the second approach an integral-equation formulation was obtained

through the use of energy techniques. Although exact solutions are again difficult,
this approach lends itself to approximate solutions. The assumption of one
variable, subject to all the displacement boundary conditions, allows the complete
integration and a reduction to an algebraic form; from which the critical load

can be obtained. Although this is simpler than the differential equation
approach, it is quite laborious,

5.2
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A third alternative presents itsclf for the solution of this problem;
that of bounding the correct solution by others which are presently known.
Although this technique is limited il precise values of the critical ''g' loading
are required, as would be necensitated in optimum design; it is of real value
in the solution to the present problem. The bounding problems utilized were
the uniformly-loaded and end-loaded cantilever beam, and the uniformly-loaded

simply-supported and clamped beams,

In addition to the limitations imposcd by the "bounding' solutions
another limitation present s tsell, and must be considered in all problems of

this type; plastic deforimation of the beams. It is found that this often provides a

lower limit on the "'g" loading, over and beyond the possibility of lateral buckling;

unless the beam is optimum designed to avoid this type of limitation.

I'he accompanying figure presents a carve of "'n" (ng's) which the
spring can withstand as a function oi beam length; all other dimensions are as
specified on the cross-section. From this it 18 seen that plastic flow isa real
limitation in this problem, and that the lateral buckling rigidity is more than

adequate; cven though only a lower bound on this rigidity 1s calculated. In the

interprctation of this limit, based on the initiation of plastic flow, it is important

to note that a yield stress of 200 x 103 to 250 x 103 psi was assumed; which may

n'' curve

be beyond that which the material can develop. In the latter event the

5.3
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would be suitably lowcred. An optimum design of this beam would raise the

plastic curve with little, if any, drop of the buckling curve, subject to little

or no weight increase; thereby substantially increasing the load carrying capa-
city of the beam=like member. Further work in these directions could be ex-

pected to result in a definitive evaluation of beam hair spring design.
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$.2 EFI LT Ol A WLUGE RETAINLR ON HAIR SPRING

Statemoent” Investigate the offocts upon the bending characteristics
of the same Yoam as was doscribod in Problem #1, of an imposed curvature at

the (ixed end,

Background: [ho (unction of the beamn 1o to perform as a spring

resisting an applicd torgue as tlHustrated below:

Yplied /or/ae

resisfence v a///zr/ /oyuc

The bending characteristica of the above spring are influenced by
an initial cur-ature imposed on a portion of the spring during the (abrication of
the above assembly, The extent of the deviation of these bending characteristics

from thosc of the hitherto employed idealization (1. c., a {lat strip) has been
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questioned. This discussion is, therefore, directed toward discerning that

extent,

Remarks: The following approach indicates that the presence of the
wedge retainer (in that it deforms the hair spring) greatly changes the bending
characteristics of the hair spring from those of an assumed '"flat'" hair spring,

b, . ] :
A more "exact" evaluation of these changes awaits further investigation and will

be undertaken under the scope of the present proposed task.

AEEroach:

Phase a: Extent of Deformation at Fixed End

Assuming that the insertion of the brass pin and the spring
into the stecel ring causes no practical change in the curvature of the steel ring,
then the surface of the fuze spring in contaci with the steel ring will take on the

ring curvaturc,

s ---J/ee/ //'VI
e brass f}-r

f Jfr.r'»:j

The maximum relative transverse deflection (sag) thus
imposed on the spring is equal to the relative deflection between the edges of

the spring and the center of the spring.
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Actually this "sag", & , can vary with the tolerances on the

ring and on the fuze spring itself; a representative value, however, was (ound

to be quite large.
Phase b: Effect of an Assumed Distribution of the Delormation

In the initial stuges of this investigation, it was assumed that
the angle o( was small. This can be shown to lead to incorrect results and the
analysis must be revised to account for &( being large. This revision is reflected

in the reported Phase a above, and Phase ¢ below. For Phase b only, the

original assumption of o{ :mall, will still be assumed to hold, thus providing
a lower bound on the effects of the curvature (i.e., the small of assumption

yields a smaller value for the curvature than the valuc subsequently found).

Under the above condition, and auuming St. Venant's
principal concerning the extent of the influence of an edge disturbance, it was
theorized that a parameter describing the effect of the deformation might be the
number of widths thru which the deformation might be equivalently assumed to

hold in an undiminished state.

A number of curves are prescnted based on that investigation.
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These curves show the deflection of the end of the spring for a load, €p (at that
end) considering spring lengths of . 3" to .45". It was assumed that the actual
deflection of the spring would fall somewhere between that of the spring with an
undiminished cylindrical deformation extending one width (b) and the spring with
an undiminished cylindrical deformation extending three widths (3b). (Note:

the remainder of the spring was assumed flat).
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In view of the shortcomings of the assumption upon which

these curves arc based, they are presented merely for an appreciation of the
possible imagnitude of the deviation of bending characteristics of the deformed
spring from those of the flat spring idcalization. As was pointed out previously,

the actual deviation would be expected to be greater than that shown,,

Phase ¢: Determination of the actual extent of the deforma-

tion caused by an initially imposed curvature at the fixed end of the spring.

The revised maximum deflection (Phase a) was found to be
non-trivial. Since this deflection falls into the large deflection category (i.e.,
8 7 h), no conclusion can be drawn as to the local character of the deformation

and, for this reason, an cstimate of the actual extent of the deformation was

undertaken.

The spring was treated as a flat plate subjected to loading
conditions so distributed as to bend the platc to the required configuration; but

to have no resultant force transverse to the plate.

Yd of 7 _ -
/a;:r//::d/n /r;:'Jm //nj i _ry,” zp

S m,:/e Sy ~rl

'S/’/M reflected bacs
to nsare horitontal/
36*1{ at /mvcf

Vlf /o ! @

fmj
75 mad 5 mmelr“‘/
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Based on this an infinite serios expansion was found for the

deflection of the spring in the Z direction, The following curves show this

deformation when cither one or two terms of the scries are employed. The

scries converges so rapidly that addition of the third term would not be warranted.
A number of factors arc evident from inspection of the curves:

(1) The spring retains some portion of the initially
imposed curvature over its entire length.

(2) The curvature in the y direction gives rise to a

curvature in the X direction.

It appears that the former assumption of a local deformation

associated with the end effect requires much further justification. The determin-

ation of the bending characteristics of the spring in its presently conceived {

configuration (as shown in the curves using first and second terms of the series)
is complex. The procedure would hold only if the yield stress of the spring were
not exceeded. The local relaxation resulting from such excessive stresses, would
result in an attenuation of the cylindrical end effect, i.e., the spring would act

more like a flat plate or beam,

5.11
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6. TORSION HAIR SPRING

Toreion hair springs are often subject to the same phenomena associ-
ated with rotating shafts, i.e., resonance at critical speeds. This reson-
ance consiste of the coincidence of the spin rate of the projectile (and there-
fore, of the hair spring) with one of the modes of transverse bending vibration
of the hatr spring. Thus the values of those spin rates which correspond to
critical speeds of the torsion hair spring, are dependent upon the properties

and configuration of that hair spring.

The ultimate purpose of the hair spring, which is concerned with its
time keeping characteristics, is to oscillate in its torsional mode, For this
reason, the design of the spring is based upon the objective of obtaining a
specific natural frequency of the spring acting in concert with a rotary inertia,
The attainment of this natural frequency is dependent upon the same properties
and configuration considerations as are the values of the critical speed spin

rates.

Thus, one finde an intcrrelationship which exists between the primary,
time kzeping, characteristic of the torsion hair spring and the secondary,
critical speed, characteristic which constitutes possible degradation of the

functioning capabllity of the time keeping system.

In order {o {llustrate this relationship, the following specific case will

be investigated.

6.1
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6.1 TORSIONAL FREQUENCY (f)

The balance oscillates in a torsional vibration about the centerline,
superposed on the overall projectile spin, 2 . The frequency, £, of this

oscillation can be shown to be given by:

4"
b 2.36 s __<

for a steel wire (modulus of elasticity, £ = 30x106 psi and Polsson's ratio,
#5.3), where

1[-' natural frequency in torsional mode (cps)

d = spring diameter, circular section (in)

M= concentrated mass = 1/2 total balance mass

D= effective diameter between masses, 1. (/)

/ : effective length of hair spring (/7))

6.2




6.2 “WHIRL" FREQUENCY (2.0 )

Likewise, it can be shown that (or the special case where the rotary
inertia of tho end le constrained so that the shaft can be considered fixed-

{ixed, the critical speed, J2 .., , ls glven by

69 a,d
ﬂcﬂf i 4‘-,’/00 27 T

for steel again, where

« 7 a .- »dlecrete constants, the value of which depends on
' ' the mode shape (of the bending vibration).

@, < 22,0
a[ L 61.7
a L lzl.o

’
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APPENDIX A: CURVED BEAM ENERGY EXPRESSIONS

For a curved beam, as shown below, it can be shown that for a none
extensional bending deformation
AT ( . o U )
£7 R R
where B, R+sR

e
‘ffé_“
-~ 4R

‘ :
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Combining these two equations, one finds

AR

M: £ R (p148)

For small bending deformations of a full coll Af:- «/ , this can be linearised

E “
M'E[ 2(.

Thus the strain encrgy of the full coil is given by

U=z §Mds

_ el
U= TEL 45

The work donc by centrifugal forccs in moving the coll element through

the displacement, (/ , is givcn by
W - J f [(mrdbc)w f}c/r
\ df-nu}
f
" f . d (force) Ny
which for a full coil becomes, av(../oflt)

3
W= zmeo'm [,Qzu rRut + %—

Again, for small deformations, ¢ , this can be lincarized as:

W= 27 ew'm Rfu

s < S

.




APPENDIX 1Y l ST ITERATION FOR SECTION 3.3.4.2.9. )
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L300 | 2.4, 5.78] 13.9 4.78 | 66.50 | -64.6 1.9 .058
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>7 86.38 404.91 O ***
Yoy, 7/
..(/
7733/ . i
o i
U, = - Yes K - &

(//_-/42‘/0" k) “— da

WER “Constcawt /G’WJ #4 “coudliton




